[P]arallel [Hi]gh-order [Li]brary for [P]DEs  Latest
Parallel High-Order Library for PDEs through hp-adaptive Discontinuous Galerkin methods
h_refinement_study_isentropic_vortex.cpp
1 #include "h_refinement_study_isentropic_vortex.h"
2 #include "flow_solver/flow_solver_factory.h"
3 #include "flow_solver/flow_solver_cases/periodic_1D_unsteady.h"
4 #include "flow_solver/flow_solver_cases/periodic_entropy_tests.h"
5 #include "physics/exact_solutions/exact_solution.h"
6 #include "physics/euler.h"
7 #include "cmath"
8 
9 namespace PHiLiP {
10 namespace Tests {
11 
12 template <int dim, int nstate>
14  const PHiLiP::Parameters::AllParameters *const parameters_input,
15  const dealii::ParameterHandler &parameter_handler_input)
16 : GeneralRefinementStudy<dim,nstate>(parameters_input, parameter_handler_input,
17  GeneralRefinementStudy<dim,nstate>::RefinementType::cell_length)
18 {}
19 
20 template <int dim, int nstate>
22  double &Lp_error_pressure,
23  std::shared_ptr<DGBase<dim,double>> dg,
24  const Parameters::AllParameters parameters,
25  double final_time,
26  int norm_p) const
27 {
28  //generate exact solution at final time
29  std::shared_ptr<ExactSolutionFunction<dim,nstate,double>> exact_solution_function;
30  exact_solution_function = ExactSolutionFactory<dim,nstate,double>::create_ExactSolutionFunction(parameters.flow_solver_param, final_time);
31  int overintegrate = 10;
32 
33  // For Euler, compare only density or pressure
34  // deal.ii compute_global_error() does not interface simply
35  // Therefore, overintegrated error calculation is coded here
36 
37  // Need to do MPI sum manaully, so declaring a new local error
38  double Lp_error_density_local = 0;
39  double Lp_error_pressure_local = 0;
40 
41  std::shared_ptr< Physics::Euler<dim,dim+2,double> > euler_physics = std::dynamic_pointer_cast<Physics::Euler<dim,dim+2,double>>(
43  dealii::QGauss<dim> quad_extra(dg->max_degree+1+overintegrate);
44  dealii::FEValues<dim,dim> fe_values_extra(*(dg->high_order_grid->mapping_fe_field), dg->fe_collection[dg->max_degree], quad_extra,
45  dealii::update_values | dealii::update_gradients | dealii::update_JxW_values | dealii::update_quadrature_points);
46 
47  const unsigned int n_quad_pts = fe_values_extra.n_quadrature_points;
48  std::array<double,nstate> soln_at_q;
49 
50  std::vector<dealii::types::global_dof_index> dofs_indices (fe_values_extra.dofs_per_cell);
51  for (auto cell : dg->dof_handler.active_cell_iterators()) {
52  if (!cell->is_locally_owned()) continue;
53  fe_values_extra.reinit (cell);
54  cell->get_dof_indices (dofs_indices);
55 
56  for (unsigned int iquad=0; iquad<n_quad_pts; ++iquad) {
57 
58  std::fill(soln_at_q.begin(), soln_at_q.end(), 0.0);
59 
60  for (unsigned int idof=0; idof<fe_values_extra.dofs_per_cell; ++idof) {
61  const unsigned int istate = fe_values_extra.get_fe().system_to_component_index(idof).first;
62  soln_at_q[istate] += dg->solution[dofs_indices[idof]] * fe_values_extra.shape_value_component(idof, iquad, istate);
63  }
64 
65  const dealii::Point<dim> qpoint = (fe_values_extra.quadrature_point(iquad));
66 
67  //Compute Lp error for istate=0, which is density
68  std::array<double,nstate> exact_soln_at_q;
69  for (unsigned int istate = 0; istate < nstate; ++istate) {
70  exact_soln_at_q[istate] = exact_solution_function->value(qpoint, istate);
71  }
72 
73  const double exact_pressure = euler_physics->compute_pressure(exact_soln_at_q);
74  const double pressure = euler_physics->compute_pressure(soln_at_q);
75 
76  if (norm_p > 0){
77  Lp_error_density_local += pow(abs(soln_at_q[0] - exact_soln_at_q[0]), norm_p) * fe_values_extra.JxW(iquad);
78  Lp_error_pressure_local += pow(abs(pressure-exact_pressure), norm_p) * fe_values_extra.JxW(iquad);
79  } else{
80  //L-infinity norm
81  Lp_error_density_local = std::max(abs(soln_at_q[0]-exact_soln_at_q[0]), Lp_error_density_local);
82  Lp_error_pressure_local = std::max(abs(pressure-exact_pressure), Lp_error_pressure_local);
83  }
84  }
85  }
86 
87  //MPI sum
88  if (norm_p > 0) {
89  Lp_error_density= dealii::Utilities::MPI::sum(Lp_error_density_local, this->mpi_communicator);
90  Lp_error_density= pow(Lp_error_density, 1.0/((double)norm_p));
91  Lp_error_pressure = dealii::Utilities::MPI::sum(Lp_error_pressure_local, this->mpi_communicator);
92  Lp_error_pressure= pow(Lp_error_pressure, 1.0/((double)norm_p));
93  } else {
94  // L-infinity norm
95  Lp_error_density = dealii::Utilities::MPI::max(Lp_error_density_local, this->mpi_communicator);
96  Lp_error_pressure = dealii::Utilities::MPI::max(Lp_error_pressure_local, this->mpi_communicator);
97  }
98 
99 }
100 
101 template <int dim, int nstate>
103 {
104 
105  const double final_time = this->all_parameters->flow_solver_param.final_time;
106  const double initial_time_step = this->all_parameters->ode_solver_param.initial_time_step;
107  const int n_steps = floor(final_time/initial_time_step);
108  if (n_steps * initial_time_step != final_time){
109  this->pcout << "WARNING: final_time is not evenly divisible by initial_time_step!" << std::endl
110  << "Remainder is " << fmod(final_time, initial_time_step)
111  << ". Consider modifying parameters." << std::endl;
112  }
113 
114  int testfail = 0;
115  dealii::ConvergenceTable convergence_table_density;
116  dealii::ConvergenceTable convergence_table_pressure;
117 
118  std::ofstream conv_tab_file;
119  const std::string fname = "convergence_tables.txt";
120  conv_tab_file.open(fname);
121 // cESFR range test -------------------------------------
122  const unsigned int nb_c_value = this->all_parameters->flow_solver_param.number_ESFR_parameter_values;
124  const double c_max = this->all_parameters->flow_solver_param.ESFR_parameter_values_end;
125  const double log_c_min = std::log10(c_min);
126  const double log_c_max = std::log10(c_max);
127  std::vector<double> c_array(nb_c_value+1);
128 
129 
130  // Create log space array of c_value
131  for (unsigned int ic = 0; ic < nb_c_value; ic++) {
132  double log_c = log_c_min + (log_c_max - log_c_min) / (nb_c_value - 1) * ic;
133  c_array[ic] = std::pow(10.0, log_c);
134  }
135  if (this->all_parameters->flux_reconstruction_type == PHiLiP::Parameters::AllParameters::Flux_Reconstruction::user_specified_value){
136  // Add cPlus value at the end
138  }
139  else{
140  // default value to ensure it is not empty, it won't be used later.
141  c_array[nb_c_value] = 0.0;
142  }
143 
144  // Loop over c_array to compute slope
145  for (unsigned int ic = 0; ic < nb_c_value+1; ic++) {
146  double c_value = c_array[ic];
147 // --------------------------------------------------------
148 
149  double L2_error_pressure_old = 0;
150  double L2_error_pressure_conv_rate=0;
151 
152 
153  for (int refinement = 0; refinement < this->n_calculations; ++refinement){
154 
155  this->pcout << "\n\n---------------------------------------------" << std::endl;
156  this->pcout << "Refinement number " << refinement + 1 << " of " << this->n_calculations << ", flux reconstruction parameter c = " << c_value << std::endl;
157  this->pcout << "---------------------------------------------" << std::endl;
158 
160  if (nb_c_value > 0){
162  }
163  auto params_modified = params;
164 
165  std::unique_ptr<FlowSolver::FlowSolver<dim,nstate>> flow_solver = FlowSolver::FlowSolverFactory<dim,nstate>::select_flow_case(&params_modified, this->parameter_handler);
166  std::unique_ptr<FlowSolver::PeriodicEntropyTests<dim, nstate>> flow_solver_case = std::make_unique<FlowSolver::PeriodicEntropyTests<dim,nstate>>(&params_modified);
167 
168  static_cast<void>(flow_solver->run());
169  this->pcout << "Finished flowsolver " << std::endl;
170 
171  const double final_time_actual = flow_solver->ode_solver->current_time;
172 
173  double L1_error_density=0;
174  double L1_error_pressure=0;
175  calculate_Lp_error_at_final_time_wrt_function(L1_error_density, L1_error_pressure, flow_solver->dg, params_modified,final_time_actual, 1);
176  double L2_error_density =0;
177  double L2_error_pressure=0;
178  calculate_Lp_error_at_final_time_wrt_function(L2_error_density,L2_error_pressure, flow_solver->dg, params_modified,final_time_actual, 2);
179  double Linfty_error_density = 0;
180  double Linfty_error_pressure = 0;
181  calculate_Lp_error_at_final_time_wrt_function(Linfty_error_density,Linfty_error_pressure, flow_solver->dg, params_modified,final_time_actual, -1);
182  this->pcout << "Computed density errors are: " << std::endl
183  << " L1: " << L1_error_density << std::endl
184  << " L2: " << L2_error_density << std::endl
185  << " Linfty: " << Linfty_error_density << std::endl;
186 
187  const double dt = flow_solver_case->get_constant_time_step(flow_solver->dg);
188  const int n_cells = pow(params_modified.flow_solver_param.number_of_grid_elements_per_dimension, PHILIP_DIM);
189  this->pcout << " at dt = " << dt << std::endl;
190 
191  // Convergence for density
192  if (this->all_parameters->flux_reconstruction_type == PHiLiP::Parameters::AllParameters::Flux_Reconstruction::user_specified_value){
193  convergence_table_density.add_value("cESFR", params_modified.FR_user_specified_correction_parameter_value );
194  convergence_table_density.set_precision("cESFR", 16);
195  convergence_table_density.set_scientific("cESFR", true);
196  }
197  convergence_table_density.add_value("refinement", refinement);
198  convergence_table_density.add_value("dt", dt );
199  convergence_table_density.set_precision("dt", 16);
200  convergence_table_density.set_scientific("dt", true);
201  convergence_table_density.add_value("n_cells",n_cells);
202  convergence_table_density.add_value("L1_error_density",L1_error_density);
203  convergence_table_density.set_precision("L1_error_density", 16);
204  convergence_table_density.evaluate_convergence_rates("L1_error_density", "n_cells", dealii::ConvergenceTable::reduction_rate_log2, PHILIP_DIM);
205  convergence_table_density.add_value("L2_error_density",L2_error_density);
206  convergence_table_density.set_precision("L2_error_density", 16);
207  convergence_table_density.evaluate_convergence_rates("L2_error_density", "n_cells", dealii::ConvergenceTable::reduction_rate_log2, PHILIP_DIM);
208  convergence_table_density.add_value("Linfty_error_density",Linfty_error_density);
209  convergence_table_density.set_precision("Linfty_error_density", 16);
210  convergence_table_density.evaluate_convergence_rates("Linfty_error_density", "n_cells", dealii::ConvergenceTable::reduction_rate_log2, PHILIP_DIM);
211 
212  if (params_modified.ode_solver_param.ode_solver_type == Parameters::ODESolverParam::ODESolverEnum::rrk_explicit_solver) {
213  const double gamma_agg = final_time_actual / (dt * flow_solver->ode_solver->current_iteration);
214 
215  convergence_table_density.add_value("gamma_agg",gamma_agg-1.0);
216  convergence_table_density.set_precision("gamma_agg", 16);
217  convergence_table_density.evaluate_convergence_rates("gamma_agg", "n_cells", dealii::ConvergenceTable::reduction_rate_log2, PHILIP_DIM);
218  }
219 
220  // Convergence for pressure
221  if (this->all_parameters->flux_reconstruction_type == PHiLiP::Parameters::AllParameters::Flux_Reconstruction::user_specified_value){
222  convergence_table_pressure.add_value("cESFR", params_modified.FR_user_specified_correction_parameter_value );
223  convergence_table_pressure.set_precision("cESFR", 16);
224  convergence_table_pressure.set_scientific("cESFR", true);
225  }
226  convergence_table_pressure.add_value("refinement", refinement);
227  convergence_table_pressure.add_value("dt", dt );
228  convergence_table_pressure.set_precision("dt", 16);
229  convergence_table_pressure.set_scientific("dt", true);
230  convergence_table_pressure.add_value("n_cells",n_cells);
231  convergence_table_pressure.add_value("L1_error_pressure",L1_error_pressure);
232  convergence_table_pressure.set_precision("L1_error_pressure", 16);
233  convergence_table_pressure.evaluate_convergence_rates("L1_error_pressure", "n_cells", dealii::ConvergenceTable::reduction_rate_log2, PHILIP_DIM);
234  convergence_table_pressure.add_value("L2_error_pressure",L2_error_pressure);
235  convergence_table_pressure.set_precision("L2_error_pressure", 16);
236  convergence_table_pressure.evaluate_convergence_rates("L2_error_pressure", "n_cells", dealii::ConvergenceTable::reduction_rate_log2, PHILIP_DIM);
237  convergence_table_pressure.add_value("Linfty_error_pressure",Linfty_error_pressure);
238  convergence_table_pressure.set_precision("Linfty_error_pressure", 16);
239  convergence_table_pressure.evaluate_convergence_rates("Linfty_error_pressure", "n_cells", dealii::ConvergenceTable::reduction_rate_log2, PHILIP_DIM);
240 
241  //Checking convergence order
242  double expected_order = params_modified.flow_solver_param.poly_degree + 1;
243  if(c_value > c_array[nb_c_value])
244  expected_order -= 1;
245  //set tolerance to make test pass for ctest. Note that the grids are very coarse (not in asymptotic range)
246  const double order_tolerance = 1.0;
247  if (refinement > 0) {
248  L2_error_pressure_conv_rate = -log(L2_error_pressure_old/L2_error_pressure)/log(this->refine_ratio);
249  this->pcout << "Order for L2 pressure at " << refinement << " is " << L2_error_pressure_conv_rate << std::endl;
250  if (abs(L2_error_pressure_conv_rate - expected_order) > order_tolerance){
251  testfail = 1;
252  this->pcout << "Expected convergence order for L2 pressure was not reached at refinement " << refinement <<std::endl;
253  }
254  if (refinement < this->n_calculations-1 && this->pcout.is_active()){
255  // Print current convergence results for solution monitoring
256  convergence_table_density.write_text(this->pcout.get_stream());
257  convergence_table_pressure.write_text(this->pcout.get_stream());
258  }
259  }
260  L2_error_pressure_old = L2_error_pressure;
261  }// refinement loop
262  //Printing and writing convergence tables
263  this->pcout << std::endl;
264  if (this->pcout.is_active()){
265  convergence_table_density.write_text(this->pcout.get_stream());
266  convergence_table_pressure.write_text(this->pcout.get_stream());
267  }
268 
269  convergence_table_density.write_text(conv_tab_file);
270  convergence_table_pressure.write_text(conv_tab_file);
271 
272  convergence_table_density.clear();
273  convergence_table_pressure.clear();
274  }// c ESFR range loop
275  conv_tab_file.close();
276  return testfail;
277 }
278 #if PHILIP_DIM!=1
280 #endif
281 } // Tests namespace
282 } // PHiLiP namespace
double final_time
Final solution time.
Advection time refinement study.
h refinement test for the isentropic vortex advection test case.
FlowSolverParam flow_solver_param
Contains the parameters for simulation cases (flow solver test)
double ESFR_parameter_values_start
For user defined FR parameter tests, value of starting FR param.
Parameters::AllParameters reinit_params_and_refine(const Parameters::AllParameters *parameters_in, int refinement, const RefinementType how) const
Reinitialize parameters while refining the timestep. Necessary because all_parameters is constant...
const MPI_Comm mpi_communicator
MPI communicator.
Definition: tests.h:39
int number_ESFR_parameter_values
For user defined FR parameter tests, number of values to be tested.
double ESFR_parameter_values_end
For user defined FR parameter tests, value of final FR param.
Files for the baseline physics.
Definition: ADTypes.hpp:10
static std::shared_ptr< ExactSolutionFunction< dim, nstate, real > > create_ExactSolutionFunction(const Parameters::FlowSolverParam &flow_solver_parameters, const double time_compare)
Construct ExactSolutionFunction object from global parameter file.
const int n_calculations
Number of times to solve for convergence summary.
Main parameter class that contains the various other sub-parameter classes.
const double refine_ratio
Ratio to refine by.
Flux_Reconstruction flux_reconstruction_type
Store flux reconstruction type.
ODESolverParam ode_solver_param
Contains parameters for ODE solver.
double initial_time_step
Time step used in ODE solver.
static std::unique_ptr< FlowSolver< dim, nstate > > select_flow_case(const Parameters::AllParameters *const parameters_input, const dealii::ParameterHandler &parameter_handler_input)
Factory to return the correct flow solver given input file.
const Parameters::AllParameters *const all_parameters
Pointer to all parameters.
Definition: tests.h:20
double FR_user_specified_correction_parameter_value
User specified flux recontruction correction parameter value.
Euler equations. Derived from PhysicsBase.
Definition: euler.h:78
static std::shared_ptr< PhysicsBase< dim, nstate, real > > create_Physics(const Parameters::AllParameters *const parameters_input, std::shared_ptr< ModelBase< dim, nstate, real > > model_input=nullptr)
Factory to return the correct physics given input file.
const dealii::ParameterHandler & parameter_handler
Parameter handler for storing the .prm file being ran.
dealii::ConditionalOStream pcout
ConditionalOStream.
Definition: tests.h:45
DGBase is independent of the number of state variables.
Definition: dg_base.hpp:82
void calculate_Lp_error_at_final_time_wrt_function(double &Lp_error_density, double &Lp_error_pressure, std::shared_ptr< DGBase< dim, double >> dg, const Parameters::AllParameters parameters, double final_time, int norm_p) const
HRefinementStudyIsentropicVortex(const Parameters::AllParameters *const parameters_input, const dealii::ParameterHandler &parameter_handler_input)
Constructor.