16 #ifndef OPENKALMAN_EIGEN_TRAITS_TRANSPOSE_HPP 17 #define OPENKALMAN_EIGEN_TRAITS_TRANSPOSE_HPP 19 #include <type_traits> 24 template<
typename MatrixType>
30 using Xpr = Eigen::Transpose<MatrixType>;
35 template<
typename Arg>
38 return std::forward<Arg>(arg).nestedExpression();
42 template<
typename Arg>
43 static constexpr
auto get_constant(
const Arg& arg)
49 template<
typename Arg>
50 static constexpr
auto get_constant_diagonal(
const Arg& arg)
56 template<Applicability b>
57 static constexpr
bool one_dimensional = OpenKalman::one_dimensional<MatrixType, b>;
60 template<Applicability b>
61 static constexpr
bool is_square = square_shaped<MatrixType, b>;
64 template<TriangleType t>
65 static constexpr
bool is_triangular = diagonal_matrix<MatrixType> or
70 static constexpr
bool is_triangular_adapter =
false;
73 static constexpr
bool is_hermitian = hermitian_matrix<MatrixType, Applicability::permitted>;
76 static constexpr
Layout layout = layout_of_v<MatrixType>;
83 #endif //OPENKALMAN_EIGEN_TRAITS_TRANSPOSE_HPP constexpr bool one_dimensional
Specifies that a type is one-dimensional in every index.
Definition: one_dimensional.hpp:83
Definition: indexible_object_traits.hpp:36
Definition: basics.hpp:41
Trait object providing get and set routines.
Definition: eigen-forward-declarations.hpp:502
Definition: eigen-comma-initializers.hpp:20
An upper-right triangular matrix.
The constant associated with T, assuming T is a constant_matrix.
Definition: constant_coefficient.hpp:36
The constant associated with T, assuming T is a constant_diagonal_matrix.
Definition: constant_diagonal_coefficient.hpp:32
Layout
The layout format of a multidimensional array.
Definition: global-definitions.hpp:47
decltype(auto) constexpr nested_object(Arg &&arg)
Retrieve a nested object of Arg, if it exists.
Definition: nested_object.hpp:34
A lower-left triangular matrix.