16 #ifndef OPENKALMAN_CONJUGATE_HPP 17 #define OPENKALMAN_CONJUGATE_HPP 29 template<indexible Arg>
31 template<
typename Arg, std::enable_if_t<indexible<Arg>,
int> = 0>
37 return std::forward<Arg>(arg);
39 else if constexpr (constant_matrix<Arg>)
42 return std::forward<Arg>(arg);
46 else if constexpr (constant_diagonal_matrix<Arg>)
49 return std::forward<Arg>(arg);
54 else if constexpr (diagonal_matrix<Arg>)
66 #endif //OPENKALMAN_CONJUGATE_HPP decltype(auto) constexpr conjugate(Arg &&arg)
Take the conjugate of a matrix.
Definition: conjugate.hpp:33
typename scalar_type_of< T >::type scalar_type_of_t
helper template for scalar_type_of.
Definition: scalar_type_of.hpp:54
constexpr bool complex
T is a values::value that reduces to std::complex or a custom complex type.
Definition: complex.hpp:46
constexpr bool not_complex
T is a values::value in which either its type is not a values::complex or its imaginary component is ...
Definition: not_complex.hpp:47
decltype(auto) constexpr to_diagonal(Arg &&arg)
Convert an indexible object into a diagonal matrix.
Definition: to_diagonal.hpp:32
The constant associated with T, assuming T is a constant_matrix.
Definition: constant_coefficient.hpp:36
The root namespace for OpenKalman.
Definition: basics.hpp:34
An interface to various routines from the linear algebra library associated with indexible object T...
Definition: library_interface.hpp:37
The constant associated with T, assuming T is a constant_diagonal_matrix.
Definition: constant_diagonal_coefficient.hpp:32
constexpr auto conj(const Arg &arg)
A constexpr function for the complex conjugate of a (complex) number.
Definition: conj.hpp:39
decltype(auto) constexpr diagonal_of(Arg &&arg)
Extract a column vector (or column slice for rank>2 tensors) comprising the diagonal elements...
Definition: diagonal_of.hpp:33
constexpr auto make_constant(C &&c, Descriptors &&descriptors)
Make a constant object based on a particular library object.
Definition: make_constant.hpp:37