OpenKalman
Classes | Namespaces | Variables
object-types.hpp File Reference

Definition of various object types. More...

This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Classes

struct  OpenKalman::internal::is_mean< T >
 
struct  OpenKalman::internal::is_euclidean_mean< T >
 
struct  OpenKalman::internal::is_matrix< T >
 
struct  OpenKalman::internal::is_self_adjoint_covariance< T >
 
struct  OpenKalman::internal::is_triangular_covariance< T >
 
struct  OpenKalman::internal::is_gaussian_distribution< T >
 
struct  OpenKalman::detail::is_cholesky_form< T, typename >
 
struct  OpenKalman::detail::is_cholesky_form< T, std::enable_if_t< covariance< T > > >
 

Namespaces

 OpenKalman
 The root namespace for OpenKalman.
 
 OpenKalman::detail
 T is an acceptable noise perturbation input to a tests.
 

Variables

template<typename T >
constexpr bool OpenKalman::mean = internal::is_mean<std::decay_t<T>>::value
 Specifies that T is a mean (i.e., is a specialization of the class Mean).
 
template<typename T >
constexpr bool OpenKalman::wrapped_mean
 Specifies that T is a wrapped mean (i.e., its row fixed_pattern have at least one type that requires wrapping). More...
 
template<typename T >
constexpr bool OpenKalman::euclidean_mean = internal::is_euclidean_mean<std::decay_t<T>>::value
 Specifies that T is a Euclidean mean (i.e., is a specialization of the class EuclideanMean).
 
template<typename T >
constexpr bool OpenKalman::euclidean_transformed
 Specifies that T is a Euclidean mean that actually has coefficients that are transformed to Euclidean space. More...
 
template<typename T >
constexpr bool OpenKalman::typed_matrix = mean<T> or euclidean_mean<T> or internal::is_matrix<std::decay_t<T>>::value
 Specifies that T is a typed matrix (i.e., is a specialization of Matrix, Mean, or EuclideanMean).
 
template<typename T >
constexpr bool OpenKalman::self_adjoint_covariance = internal::is_self_adjoint_covariance<std::decay_t<T>>::value
 T is a self-adjoint covariance matrix (i.e., a specialization of Covariance).
 
template<typename T >
constexpr bool OpenKalman::triangular_covariance = internal::is_triangular_covariance<std::decay_t<T>>::value
 T is a square root (Cholesky) covariance matrix (i.e., a specialization of SquareRootCovariance).
 
template<typename T >
constexpr bool OpenKalman::covariance = self_adjoint_covariance<T> or triangular_covariance<T>
 T is a specialization of either Covariance or SquareRootCovariance.
 
template<typename T >
constexpr bool OpenKalman::gaussian_distribution = internal::is_gaussian_distribution<std::decay_t<T>>::value
 T is a Gaussian distribution.
 
template<typename T >
constexpr bool OpenKalman::distribution = gaussian_distribution<T>
 T is a statistical distribution of any kind that is defined in OpenKalman.
 
template<typename T >
constexpr bool OpenKalman::cholesky_form = detail::is_cholesky_form<std::decay_t<T>>::value
 Specifies that a type has a nested native matrix that is a Cholesky square root. More...
 
template<typename T >
constexpr bool OpenKalman::covariance_nestable
 T is an acceptable nested matrix for a covariance (including triangular_covariance). More...
 
template<typename T >
constexpr bool OpenKalman::typed_matrix_nestable
 Specifies a type that is nestable in a general typed matrix (e.g., matrix, mean, or euclidean_mean) More...
 

Detailed Description

Definition of various object types.