|
template<std::size_t dim> |
static constexpr auto | unscaled_W0 () |
|
template<std::size_t dim> |
static constexpr auto | unscaled_W () |
|
template<typename... Dist, std::enable_if_t<(gaussian_distribution< Dist > and ...) and(sizeof...(Dist) > 0> |
static constexpr auto | sample_points (const Dist &...ds) |
| Calculate the scaled and translated sigma points, given a prior distribution and noise terms. More...
|
|
static auto | weighted_means (YMeans &&y_means) |
|
static auto | covariance (const X &x_deviations, const Y &y_deviations) |
| Calculate the posterior covariance, given prior and posterior deviations from the sigma points. More...
|
|
template<typename Parameters = SphericalSimplexParameters>
struct OpenKalman::SphericalSimplex< Parameters >
Spherical simplex sigma points, as implemented in, e.g., Simon J.
Julier. The spherical simplex unscented tests. In Proceedings of American Control Conference, Denver, Colorado, pages 2430–2434, 2003.
template<typename Parameters = SphericalSimplexParameters>
template<typename... Dist, std::enable_if_t<(gaussian_distribution< Dist > and ...) and(sizeof...(Dist) > 0>
Calculate the scaled and translated sigma points, given a prior distribution and noise terms.
The mean of the sample points is effectively translated the origin.
- Template Parameters
-
Dist | The prior distribution and any optional noise distributions. |
- Returns
- A tuple of sigma point matrices, one matrix for each input and noise distribution. Each column of these matrices corresponds to a sigma point.