16 #ifndef OPENKALMAN_EIGEN_TRIANGULARVIEW_HPP 17 #define OPENKALMAN_EIGEN_TRIANGULARVIEW_HPP 19 #include <type_traits> 26 template<
typename MatrixType,
unsigned int Mode>
31 using Xpr = Eigen::TriangularView<MatrixType, Mode>;
32 using IndexType =
typename MatrixType::Index;
39 template<
typename Arg>
43 template<
typename Arg,
typename N>
50 template<
typename Arg>
53 return std::forward<Arg>(arg).nestedExpression();
57 template<
typename Arg>
58 static constexpr
auto get_constant(
const Arg& arg)
60 if constexpr (zero<MatrixType> or ((Mode & Eigen::ZeroDiag) != 0 and diagonal_matrix<MatrixType>))
63 return std::monostate{};
67 template<
typename Arg>
68 static constexpr
auto get_constant_diagonal(
const Arg& arg)
72 if constexpr ((Mode & Eigen::UnitDiag) != 0 and (
73 ((Mode & Eigen::Upper) != 0 and triangular_matrix<MatrixType, TriangleType::lower>) or
74 ((Mode & Eigen::Lower) != 0 and triangular_matrix<MatrixType, TriangleType::upper>)))
78 else if constexpr ((Mode & Eigen::ZeroDiag) != 0 and (
79 ((Mode & Eigen::Upper) != 0 and triangular_matrix<MatrixType, TriangleType::lower>) or
80 ((Mode & Eigen::Lower) != 0 and triangular_matrix<MatrixType, TriangleType::upper>)))
91 template<Applicability b>
92 static constexpr
bool one_dimensional = OpenKalman::one_dimensional<MatrixType, b>;
95 template<Applicability b>
96 static constexpr
bool is_square = square_shaped<MatrixType, b>;
99 template<TriangleType t>
100 static constexpr
bool is_triangular =
102 (t ==
TriangleType::lower and ((Mode & Eigen::Lower) != 0 or triangular_matrix<MatrixType, TriangleType::lower>)) or
103 (t ==
TriangleType::upper and ((Mode & Eigen::Upper) != 0 or triangular_matrix<MatrixType, TriangleType::upper>)) or
107 static constexpr
bool is_triangular_adapter =
true;
110 static constexpr
bool is_hermitian = diagonal_matrix<MatrixType> and (not values::complex<scalar_type> or
119 #endif //OPENKALMAN_EIGEN_TRAITS_HPP constexpr auto count_indices(const T &t)
Get the number of indices available to address the components of an indexible object.
Definition: count_indices.hpp:33
constexpr bool one_dimensional
Specifies that a type is one-dimensional in every index.
Definition: one_dimensional.hpp:83
Definition: indexible_object_traits.hpp:36
typename scalar_type_of< T >::type scalar_type_of_t
helper template for scalar_type_of.
Definition: scalar_type_of.hpp:54
Lower, upper, or diagonal matrix.
Definition: eigen-comma-initializers.hpp:20
constexpr bool not_complex
T is a values::value in which either its type is not a values::complex or its imaginary component is ...
Definition: not_complex.hpp:47
An upper-right triangular matrix.
constexpr bool triangular_matrix
Specifies that a type is a triangular matrix (upper, lower, or diagonal).
Definition: triangular_matrix.hpp:37
The constant associated with T, assuming T is a constant_matrix.
Definition: constant_coefficient.hpp:36
The root namespace for OpenKalman.
Definition: basics.hpp:34
The constant associated with T, assuming T is a constant_diagonal_matrix.
Definition: constant_diagonal_coefficient.hpp:32
A diagonal matrix (both a lower-left and an upper-right triangular matrix).
decltype(auto) constexpr nested_object(Arg &&arg)
Retrieve a nested object of Arg, if it exists.
Definition: nested_object.hpp:34
A lower-left triangular matrix.
constexpr auto get_vector_space_descriptor(const T &t, const N &n)
Get the coordinates::pattern object for index N of indexible object T.
Definition: get_vector_space_descriptor.hpp:56