|
template<typename InputDist , typename... Ts, std::enable_if_t< gaussian_distribution< InputDist > and(tuple_like< Ts > and ...), int > = 0> |
auto | operator() (const InputDist &x, const Ts &...ts) const |
| Perform one or more consecutive linear(ized) transforms. More...
|
|
template<typename InputDist , typename Trans , typename ... NoiseDists, std::enable_if_t<(gaussian_distribution< InputDist > and ... and gaussian_distribution< NoiseDists >) and linearized_function< Trans, 1 > and std::is_invocable_v< Trans, typename DistributionTraits< InputDist >::Mean, typename DistributionTraits< NoiseDists >::Mean... >, int > = 0> |
auto | operator() (const InputDist &x, const Trans &g, const NoiseDists &...ns) const |
| Perform a linear(ized) transform from one statistical distribution to another. More...
|
|
template<typename InputDist , typename... Ts, std::enable_if_t< gaussian_distribution< InputDist > and(tuple_like< Ts > and ...), int > = 0> |
auto | transform_with_cross_covariance (const InputDist &x, const Ts &...ts) const |
| Perform one or more consecutive linear(ized) transforms, also returning the cross-covariance. More...
|
|
template<typename InputDist , typename Trans , typename ... NoiseDists, std::enable_if_t<(gaussian_distribution< InputDist > and ... and gaussian_distribution< NoiseDists >) and linearized_function< Trans, 1 > and std::is_invocable_v< Trans, typename DistributionTraits< InputDist >::Mean, typename DistributionTraits< NoiseDists >::Mean... >, int > = 0> |
auto | transform_with_cross_covariance (const InputDist &x, const Trans &g, const NoiseDists &...ns) const |
| Perform a linear(ized) transform, also returning the cross-covariance. More...
|
|
template<typename InputDist , typename T , typename... Ts, std::enable_if_t< distribution< InputDist > and(tuple_like< T > and ... and tuple_like< Ts >), int > = 0> |
auto | operator() (const InputDist &x, const T &t, const Ts &...ts) const |
| Perform one or more consecutive transforms. More...
|
|
template<typename InputDist , typename T , typename... Ts, std::enable_if_t< distribution< InputDist > and(tuple_like< T > and ... and tuple_like< Ts >), int > = 0> |
auto | transform_with_cross_covariance (const InputDist &x, const T &t, const Ts &...ts) const |
| Perform one or more consecutive transforms, also returning the cross-covariance. More...
|
|
template<typename Derived>
template<typename InputDist , typename Trans , typename ... NoiseDists, std::enable_if_t<(gaussian_distribution< InputDist > and ... and gaussian_distribution< NoiseDists >) and linearized_function< Trans, 1 > and std::is_invocable_v< Trans, typename DistributionTraits< InputDist >::Mean, typename DistributionTraits< NoiseDists >::Mean... >, int > = 0>
Perform a linear(ized) transform from one statistical distribution to another.
- Template Parameters
-
InputDist | The prior distribution. |
Trans | The linear or linearized tests on which the transform is based (e.g., LinearTransformation). |
NoiseDists | Zero or more noise distributions. |
- Returns
- The posterior distribution.
template<typename Derived>
template<typename InputDist , typename... Ts, std::enable_if_t< gaussian_distribution< InputDist > and(tuple_like< Ts > and ...), int > = 0>
Perform one or more consecutive linear(ized) transforms, also returning the cross-covariance.
- Template Parameters
-
InputDist | The prior distribution. |
Ts | A list of tuple-like structures, each containing arguments to a transform. These arguments each include a tests and zero or more noise distributions. |
- Returns
- A tuple containing the posterior distribution and the cross-covariance.
template<typename Derived>
template<typename InputDist , typename Trans , typename ... NoiseDists, std::enable_if_t<(gaussian_distribution< InputDist > and ... and gaussian_distribution< NoiseDists >) and linearized_function< Trans, 1 > and std::is_invocable_v< Trans, typename DistributionTraits< InputDist >::Mean, typename DistributionTraits< NoiseDists >::Mean... >, int > = 0>
Perform a linear(ized) transform, also returning the cross-covariance.
- Template Parameters
-
InputDist | The prior distribution. |
Trans | The linear or linearized tests on which the transform is based (e.g., LinearTransformation). |
NoiseDists | Zero or more noise distributions. |
- Returns
- A tuple comprising the posterior distribution and the cross-covariance.